960 research outputs found

    On U-Statistics and Compressed Sensing II: Non-Asymptotic Worst-Case Analysis

    Full text link
    In another related work, U-statistics were used for non-asymptotic "average-case" analysis of random compressed sensing matrices. In this companion paper the same analytical tool is adopted differently - here we perform non-asymptotic "worst-case" analysis. Simple union bounds are a natural choice for "worst-case" analyses, however their tightness is an issue (and questioned in previous works). Here we focus on a theoretical U-statistical result, which potentially allows us to prove that these union bounds are tight. To our knowledge, this kind of (powerful) result is completely new in the context of CS. This general result applies to a wide variety of parameters, and is related to (Stein-Chen) Poisson approximation. In this paper, we consider i) restricted isometries, and ii) mutual coherence. For the bounded case, we show that k-th order restricted isometry constants have tight union bounds, when the measurements m = \mathcal{O}(k (1 + \log(n/k))). Here we require the restricted isometries to grow linearly in k, however we conjecture that this result can be improved to allow them to be fixed. Also, we show that mutual coherence (with the standard estimate \sqrt{(4\log n)/m}) have very tight union bounds. For coherence, the normalization complicates general discussion, and we consider only Gaussian and Bernoulli cases here.Comment: 12 pages. Submitted to IEEE Transactions on Signal Processin

    Polaronic signatures and spectral properties of graphene antidot lattices

    Full text link
    We explore the consequences of electron-phonon (e-ph) coupling in graphene antidot lattices (graphene nanomeshes), i.e., triangular superlattices of circular holes (antidots) in a graphene sheet. They display a direct band gap whose magnitude can be controlled via the antidot size and density. The relevant coupling mechanism in these semiconducting counterparts of graphene is the modulation of the nearest-neighbor electronic hopping integrals due to lattice distortions (Peierls-type e-ph coupling). We compute the full momentum dependence of the e-ph vertex functions for a number of representative antidot lattices. Based on the latter, we discuss the origins of the previously found large conduction-band quasiparticle spectral weight due to e-ph coupling. In addition, we study the nonzero-momentum quasiparticle properties with the aid of the self-consistent Born approximation, yielding results that can be compared with future angle-resolved photoemission spectroscopy measurements. Our principal finding is a significant e-ph mass enhancement, an indication of polaronic behavior. This can be ascribed to the peculiar momentum dependence of the e-ph interaction in these narrow-band systems, which favors small phonon momentum scattering. We also discuss implications of our study for recently fabricated large-period graphene antidot lattices.Comment: published versio

    Bare-excitation ground state of a spinless-fermion -- boson model and W-state engineering in an array of superconducting qubits and resonators

    Full text link
    This work unravels an interesting property of a one-dimensional lattice model that describes a single itinerant spinless fermion (excitation) coupled to zero-dimensional (dispersionless) bosons through two different nonlocal-coupling mechanisms. Namely, below a critical value of the effective excitation-boson coupling strength the exact ground state of this model is the zero-quasimomentum Bloch state of a bare (i.e., completely undressed) excitation. It is demonstrated here how this last property of the lattice model under consideration can be exploited for a fast, deterministic preparation of multipartite WW states in a readily realizable system of inductively-coupled superconducting qubits and microwave resonators.Comment: final, published versio

    Extracting spectral properties of small Holstein polarons from a transmon-based analog quantum simulator

    Full text link
    The Holstein model, which describes purely local coupling of an itinerant excitation (electron, hole, exciton) with zero-dimensional (dispersionless) phonons, represents the paradigm for short-range excitation-phonon interactions. It is demonstrated here how spectral properties of small Holstein polarons -- heavily phonon-dressed quasiparticles, formed in the strong-coupling regime of the Holstein model -- can be extracted from an analog quantum simulator of this model. This simulator, which is meant to operate in the dispersive regime of circuit quantum electrodynamics, has the form of an array of capacitively coupled superconducting transmon qubits and microwave resonators, the latter being subject to a weak external driving. The magnitude of XYXY-type coupling between adjacent qubits in this system can be tuned through an external flux threading the SQUID loops between those qubits; this translates into an {\em in-situ} flux-tunable hopping amplitude of a fictitious itinerant spinless-fermion excitation, allowing one to access all the relevant physical regimes of the Holstein model. By employing the kernel-polynomial method, based on expanding dynamical response functions in Chebyshev polynomials of the first kind and their recurrence relation, the relevant single-particle momentum-frequency resolved spectral function of this system is computed here for a broad range of parameter values. To complement the evaluation of the spectral function, it is also explained how -- by making use of the many-body version of the Ramsey interference protocol -- this dynamical-response function can be measured in the envisioned analog simulator.Comment: 17 pages, 7 figure
    • …
    corecore